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Breaking the Barriers – 
Accessing the Theoretical Perspectives on the Road to Structure 

and Form 

Abstract 

A wide range of geometric principles, concepts and perspectives, invariably sourced in ancient times, 
offer potential as problem solving tools in the twenty-first century. This appears to be accepted by 
design teachers and instructors worldwide, but evidence for the wide-spread inclusion and systematic 
delivery of such material in the design curriculum of the first decade of the twenty-first century is 
largely lacking. This is surprising, since many of the great breakthroughs in design, and especially 
architecture, were conditional upon individuals who not only understood materials and processes but 
also had an intimate knowledge of the geometry of structure and form. Notable examples include 
William Morris, Louis Foreman Day, Frank Lloyd Wright, Le Corbusier, and Richard Buckminster 
Fuller. There seems therefore to be a barrier preventing this potentially beneficial development. The 
authors believe that this barrier is the perceived lack of a clearly understandable and accessible 
collection of literature of importance to the development of relevant teaching material. This is the 
problem being addressed by this paper.  

Design teachers and instructors perceive themselves at a disadvantage when faced with developing 
curriculum material relating to structure and form. It is often the case that explanations of key concepts 
and principles are hidden in relatively obscure literature and wrapped in unfamiliar symbols and 
terminology. This paper aims to challenge this state of affairs first by identifying relevant literature 
which is accessible to non-mathematicians, and second by providing an outline from which design 
educationists, with just a basic knowledge of geometry, may develop an educational module to meet 
the specific needs of their own students. 

A range of topics associated with structure and form in design is introduced. Various regular polygons 
that are capable of tiling the plane without gap or overlap are identified. Periodic (or repeating) and 
aperiodic (or non-repeating) tessellations are considered. Inter-related concepts, associated with the 
Fibonacci series and the golden section, are explained. The nature of the five regular polyhedra (or 
Platonic solids) and the thirteen semi-regular polyhedra (or Archimedean solids) is explained. 
Reference is made to principles associated with modularity, and the nature of fractals and scale 
symmetry is outlined. Sample exercises and examples of student assignment work are presented. 
Literature appropriate for use by teachers and instructors, involved in developing curriculum material, 
is identified.   

Many of the geometric concepts and ideas introduced can, with insight and vision, offer immense 
potential as problem-solving design tools in the twenty-first century. The intention of this paper is to 
stimulate interest among teachers and instructors concerned with design education, and to rekindle 
their awareness of the fundamental geometric concepts and principles which encroach on the design 
process. The stress is on providing guidelines which will assist design teachers in the development of 
a curriculum that fits well with their own teaching needs. As in-house research progresses, this also 
should feed the curriculum and thus allow its further development.  

Key Words: structure, form, tilings, patterns, polyhedra.  

Introduction 
In both two- and three-dimensional design, including textile, graphic, fashion and product design, an 
awareness of the geometrical concepts and principles underlying design structure and form is of 
fundamental importance. Many of the geometric concepts and associated principles underlying 
structure and form in design can be sourced in ancient times and transcend the boundaries between 
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art, science and mathematics. An understanding of these can offer immense potential as problem-
solving design tools. This is widely accepted by design teachers and instructors worldwide. Probably 
the most notable early text, aimed primarily at developing an understanding of structure and form 
(particularly in the context of biological processes), is On Growth and Form by Thompson (1st ed. 
1917, and later editions in 1917, 1942, 1961, reprinted several times between 1966 and 1984, and 
with a seventh printing in 2005). The work of Critchlow (1969) is particularly notable. Recent examples 
include: Pearce, 1990; Ching, 1996; Ching, 1998; Elam, 2001; Leborg, 2004). A good general 
textbook covering a wide range of relevant subject areas was provided by Kapraff (2001). Publications 
such as these have informed research concerned with the geometrical aspects of design, and have 
inspired developments in the curriculum delivered to students in many higher education institutions. 
This paper presents details of one such development. Running under the title, ‘Design Theory – 
Structure and Form’, this lecture-based course is concerned largely with the geometrical aspects of 
design, and is delivered as a core module to three-hundred design students (including graphic design, 
textile design and fashion students) and is selected as an optional module by a further fifty students. 
The syllabus is based largely on the past or current research interests of the authors of this paper. 
Assessment of the module is by written assignments plus formal written examination.  

The objective of this paper is to present an outline of subject matter of importance to design teachers 
and instructors who wish to develop the curriculum presented to design students. The intention is to 
rekindle an awareness of fundamental geometric concepts and principles, regarded as essential 
components of the design curriculum one hundred years ago, but gradually eased out during the past 
three or four decades. Two sample exercises which could be developed into more substantial 
assignment briefs are presented. Key texts are identified, and a few examples of student work are 
given (Figure 9). The paper should be of particular value to design teachers who are not from a 
conventional, art and design educational background, but whose current professional duties involve 
the development of theoretical components to underpin a largely practice-based design curriculum. To 
others, the paper may act as the basis of a simplistic refresher course, as a source from which to build 
supplementary teaching material, or as a framework to which current curriculum material could be 
added. Many experienced professional practitioners will have an intuitive familiarity with the principles 
mentioned here, and may well be pleased or intrigued at their formalisation in an academic setting.  

The wider spectrum of geometric analysis was considered in an interesting article by Reynolds (2001). 
Various geometric characteristics, principles, concepts, constructions, comparative measures and 
ratios are of particular importance to both the design practitioner and the design analyst. These 
include the following: 

• 1:1 (square). 

• �: radius (circle). 

• Square root series �2 (=1.4142): 1; �3 (=1.732): 1; �4 (=2): 1 etc. 

• Regular polygons (particularly squares, pentagons and hexagons), Reauleaux 

polygons, the ad quadratum, the vesica pisces, the sacred cut and other 

constructions. 

• The golden section, Phi (φ) or 1.618:1 and various associated constructions such as 

the golden rectangle or golden spiral. 

• Triangles (equilateral, isosceles, right angle, scalene). 

• Lattice structures (including Bravais lattices) and grids based on the Platonic, 

Archimedean or other sorts of tilings. 

• Various musical series, including 1:1; 1:2; 2:3; 3:4, etc. 



4

• Geometric symmetry and its component geometric operations (or symmetries). 

It is recognised that all of the above are of value in the armoury of both the practitioner and the 
analyst. However, this paper focuses on only a few of these, and is by no means all encompassing. It 
simply identifies some of the more important theoretical aspects of structure and form, which have 
been included in the curriculum at the authors’ educational institution, and which have been 
considered (by students) to be important tools in addressing the requirements of many practice-based 
assignments. Meanwhile, tutors have remarked on qualitative improvements in the responses to these 
assignments based, at least in part, on the inclusion of the curriculum material presented in summary 
form in this paper.  

Point, line, shape and form 
Several inter-related structural elements are of importance in the design process.  These include: 
point, line, shape or form, and pattern. Point is the basic graphic element from which all visual 
expression springs. A collection of connected points (or a moving point) constitutes a line. Lines have 
psychological impact, influenced by their direction or orientation, weight and emphasis, and variations 
in these. Lines may be human-made or may be created by nature. They may exist by implication (as 
an outline between two colours or two textures, for example) and may be orientated horizontally, 
vertically or diagonally. They may be straight or curved. Together, lines constitute forms and shapes, 
and create areas or masses which define objects in space. The word “shape” is best used to express 
length and width in two-dimensions, and the word “form” to express length, width and depth in three 
dimensions. For definition and discussion of the nature of point, line and form, as well as other 
elements of a “visual grammar”, it is worth referring to Leborg (2006). Lidwell et al (2003) presented a 
well produced and well illustrated introductory text which dealt with a wide range of geometric and 
other concepts of importance to designers.   

Polygons, circles and other constructions 
Polygons are enclosed figures with sides (represented, for example, by lines on paper). Regular 
polygons have equal sides and equal angles. The names attributed to regular polygons have their 
origin in Greek: a pentagon with five sides, a hexagon with six sides, a heptagon with seven sides, an 
octagon with eight sides, a nonagon with nine sides and a decagon with ten sides. Students should 
familiarise themselves with the construction of both a regular pentagon and a regular hexagon. A 
circle may be considered as an infinite-sided polygon, without beginning or end. It is the easiest 
geometric figure to construct with accuracy and, over the years, has had a multitude of uses in the 
visual arts. Amongst much else, it is associated with rainbows, halos, the prayer wheel, the marriage 
ring, rose windows in European mediaeval cathedrals and pre-historic stone circles. It is a vital 
component in geometric construction and the discipline of geometry would have a limited range 
without it. Lawlor (1982) provided a useful review of various geometrical constructions. Reuleaux 
polygons, named after the German engineer Franz Reuleaux (1829-1905), have curved rather than 
straight sides (similar to the British 20 and 50 pence pieces). They have an odd number of sides and 
each side is comprised of an arc with a centre at the opposite angle. An important characteristic is that 
such constructions have a resultant centre equidistant from any point on any side. Examples are given 
in Figure 1. Analysis of buildings at Pompeii and Herculaneum suggests that the design of many 
ancient Roman houses was based on systems of proportion associated with the square. Two 
particular systems of proportion are of importance: the so-called “ad quadratum” and the “sacred cut”.  

Figure 1: Examples of Reuleaux polygons 
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Regular and semi-regular tilings 
The term “tilings” is used when referring to polygons which cover (or tessellate) the plane, edge-to-
edge, without gap or overlap. A regular tiling (or tessellation) is comprised of copies of a single 
polygon of the same size and shape. Tessellations have been traced back to ancient cultures, but 
their formal study (in the academic sense) is relatively recent. Johannes Kepler (1571 – 1630) 
conducted an early study of tessellations in 1619, and produced a notable attempt to tile the plane 
using figures with five-fold rotational symmetry. Major scientific progress came in 1891 when Federov, 
the Russian crystallographer, proved that every regular tiling of the plane is constructed in accordance 
with one of seventeen combinations, the same combinations of importance to pattern construction. 
Grunbaum and Shephard in their monumental treatise Tilings and Patterns, published in 1987, charted 
much of what is currently known about the mathematics of tilings. Only three regular polygons 
tessellate the two-dimensional plane: equilateral triangles, squares and hexagons.  Tessellation is only 
possible where angles at the vertex (i.e. where the angles meet) add up to precisely 360 degrees. The 
three possibilities, each using one type of regular polygon, are known as the Platonic or regular tilings. 
Several forms of notation are in use. For example a tiling may be notated by choosing a vertex and 
counting the sides of the polygon which touches it as well as the number of polygons involved at the 
vertex. In the case of the hexagon tiling, each polygon has six sides and three of these polygons meet 
at each vertex; an appropriate notation is {6, 3}. Using this system, the other regular tilings can be 
notated by {4, 4} and {3, 6}. Illustrations for each of the three tilings are presented in Figure 2. 

Figure 2: The three regular or Platonic tilings 

Tessellations of the plane, using two or more regular polygons, are also possible. There are eight 
possibilities, and these are known as the Archimedean or semi-regular tilings (Figure 3). A rule is that 
each vertex must be identical. An interesting review of the nature of Islamic tilings was given by 
Critchlow (1976, reprinted 2004).  

Figure 3: The eight semi-regular or Archimedean tilings 

Motifs, patterns and symmetry 
Motifs are the building blocks of patterns. The principal characteristic of a regular repeating pattern is 
the repetition of a motif by a given distance across the plane. Patterns are considered to have 
symmetry characteristics. In this case, the meaning of the term “symmetry” extends beyond its 
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common every-day usage to cover geometric actions beyond bi-lateral symmetry. Patterns may exhibit 
one or more of four symmetry operations or symmetries. These are: translation, by which a motif 
undergoes repetition vertically, horizontally, or diagonally at regular intervals while retaining the same 
orientation; rotation, by which a motif undergoes repetition round an imaginary fixed point; reflection, 
by which a motif undergoes repetition across an imaginary line, known as a reflection axis; glide-
reflection, by which a figure is repeated in one action through a combination of translation and 
reflection, in association with a glide-reflection axis. Schematic illustrations of the four symmetry 
operations are presented in Figure 4. Patterns may be classified with respect to their symmetry 
characteristics. Combinations of the four symmetry operations yield seventeen possibilities (or 
classes).  An explanation of fundamental concepts was given by Hann and Thomson (1992), Hann 
(2003), Stevens (1984), and Washburn and Crowe (1988 and 2004).  A useful text from which to 
develop an understanding of symmetry in tilings was provided by Schattschneider (1990). Although 
designers working in two dimensions often acknowledge the importance of geometry in the 
construction of regular patterns, they invariably hesitate to leap beyond tried and tested repeat 
structures (based largely on block or half drop repeats). This reticence is understandable, since the 
bulk of literature concerned with two-dimensional design geometry is often inaccessible due to the 
preponderance of unfamiliar terminology. An appreciation of symmetry concepts can help designers to 
make that leap into using novel repeat structures. Probably the best sources to aid the construction of 
regular repeating patterns are Schattschneider (1990), Stevens (1984) and Horne (2000). 

Figure 4: The four symmetry operations 
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Aperiodic tilings  
The regular and semi-regular tilings, mentioned above, translate (or repeat) in two distinct directions 
across the plane without gap or overlap. These may also be referred to as periodic tilings or 
tessellations. There is also a class of tilings which do not translate, but nevertheless cover the plane 
without gap or overlap. These are termed non-periodic or aperiodic. During the latter part of the 
twentieth century, the British mathematician Roger Penrose developed an aperiodic tiling, which 
exhibited five-fold rotational symmetry, at various points within its non-repeating structure. The tiling is 
comprised of two rhombi (known as kites and darts), one with angles of 36 and 144 degrees and one 
with angles of 72 and 108 degrees. In constructing the tiling it is necessary to adhere to a series of 
rules specified by Penrose (1990). In the context of Penrose tilings, it is of interest (and probably also 
of significance) to note that the quantity of one rhombus used in the construction relative to the other 
conforms to a ratio of 1.618. This ratio is closely associated with the so-called golden section or a 
numerical series known as the Fibonacci series. The nature of the Fibonacci series and the golden 
section is dealt with the section below. A Penrose-type tiling is shown in Figure 5. 

Figure 5: A Penrose-type tiling 
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Polyhedra
A polyhedron is a solid consisting of polygonal faces. These faces meet at edges, and the edges meet 
at vertices (singular vertex). There are five regular polyhedra (known as the “Platonic solids”) each 
comprised of combinations of one specific type of regular polygon (Figure 6). With each Platonic solid, 
the faces are thus identical in size and shape, and the same number of faces meets at each vertex. 
The five Platonic solids are as follows: the tetrahedron (four faces), the cube or hexahedron (six 
faces), the octahedron (eight faces), the dodecahedron (twelve faces) and the icosahedron (twenty 
faces). The difficulties encountered in attempting to apply two-dimensional repeating designs to 
regular polyhedra, avoiding gap and overlap and ensuring precise registration, are a particular 
research focus currently at the authors’ educational institution. The symmetry characteristics of 
importance to the process have been identified, and the rules which affect the patterning of each of 
the five Platonic solids are being developed. These will ultimately be refined, applied and the 
associated concepts integrated/imported into the curriculum described in this paper. 

Figure 6: The five Platonic solids 
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A further set of polyhedra (thirteen in total) can be obtained largely from the Platonic solids by cutting 
away the corners and producing “truncated polyhedra. These are known as the “Archimedean solids”, 
and each is formed from combinations of two or more types of regular polygonal faces (Figure 7). 
They are considered “semi-regular” and, in each case, the vertices are identical. A good explanatory 
text was provided by Cromwell (1999). 

Probably the best known of these thirteen solids is the truncated icosahedron (similar in shape to a 
soccer ball, with 30 faces comprised of 20 regular hexagons and 12 regular pentagons). It is worth 
remarking that a highly significant scientific advance, reported in 1985, was the discovery of a super-
stable all-carbon C60 molecule, arranged in the form of a truncated icosahedron. The molecule was 
appropriately named Buckminsterfullerene (after the architect Buckminster Fuller whose ideas had 
stimulated the quest for such structures). C60 Buckminsterfullerene is a form of carbon alongside 
diamond and graphic. Its physical properties, and thus its ultimate performance, are readily 
attributable to its geometric form, a common relationship evident across many areas of material 
science and engineering and an attribute which should offer no surprise to designers.  

Figure 7: The thirteen Archimedean solids 
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Fractals and self-similarity (or scale symmetry) 
A fractal is a geometrical shape made up of identical parts each of which is (at least approximately) a 
reduced/size copy of the whole. Fractal, from the Latin fractus meaning fractured or broken, refers to a 
unique type of geometric shape. Fractals have two distinct properties: they tend to exhibit infinite detail 
and they conform to the same shape at different scales, a property known as self-similarity. Fractals 
can be based on mathematical models, but are also common in real life. Examples of nature’s fractals 
are clouds, coastlines, lightning, various vegetables (e.g. cauliflower and broccoli) and mountains. 
This phenomenon of self similarity, or scale symmetry, is exhibited in the Koch snowflake shown in 
Figure 8. The basic unit of the Koch snowflake, first constructed by the mathematician Helge von Koch 
(1870-1924), is the equilateral triangle which can be built up into a much larger structure while 
retaining certain similarities at the smaller scale level. Although the roots of fractal geometry can be 
traced to the late 19th century, it was the work of Benoit Mandelbrot, in the 1960s and 1970s that 
popularized the concepts. His 1961 study of similarities in large- and small-scale fluctuations of the 
stock market was followed by work on the turbulent motion of fluids and the distribution of galaxies in 
the universe. A 1967 paper on the length of the English coast showed that irregular shorelines are 
fractals whose lengths increase with increasing degree of measurable detail. By 1975, Mandelbrot had 
developed a theory of fractals, and publications by him and others made fractal geometry accessible 
to a wider audience.  

Figure 8: The Koch snowflake 

Modularity 
Modularity embraces the concept of “minimum inventory and maximum diversity”. In other words, from 
a few basic modules (such as two or three tile shapes), a large collection of different structures (or 
solutions) is possible. The concept is of relevance to science, art and design, and can be detected 
throughout the natural world. It offers potential for innovation in the decorative arts and design, and is 
common in two-dimensional repeating patterns as well as architecture.  A comprehensive account is 
given by Pearce (1990). Figure 9 shows twelve modular designs created by tessellating tiles cut from 
an equilateral triangle and a hexagon (following the specifications given in Exercise 2 in the 
Appendix).  
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Figure 9: Modular designs based on specification given in Exercise 2 (Appendix) 
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The Fibonacci series and the golden section 
A special series of numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55…..) was discovered by Leonardo Fibonacci 
in 1202 CE as a result of an investigation of population growth among rabbits. It was found that the 
proportion yielded by successive numbers within the series approximated to 1.618, which has become 
known as Phi. The proportion was known to the ancient Greeks as the “golden section”. Phi can be 
derived in many ways and shows up in relationships throughout the natural, constructed and 
manufactured worlds and beyond. It can be detected in architectural contexts, is associated with 
proportions of the human body, other animals, plants, DNA, the solar system, music, dance, sculpture 
and other art forms. Both the Greeks and the ancient Egyptians are believed to have used the golden 
section when designing their buildings and monuments. The proportion is evident in the works of 
various artists; Leonardo da Vinci and George Seurat are contrasting examples. The architect, 
Charles-Edouard Jeanneret (known as “Le Corbusier”) developed a rule of design known as the 
“modular”, a measure related to the proportions of the human body. The associated numerical series 
conformed closely to Fibonacci numbers.  

Rectangles, triangles and spirals, which conform to golden section proportions, can be constructed. 
Students should develop expertise in drawing these. Both Huntley (1970) and Ghyka (1977ed.) gave 
useful guidelines. Golden section proportions and bi-lateral symmetry have been associated 
(separately) with attractiveness in human beings, particularly in the context of facial features. An 
interesting review article dealing with the golden section was produced by Green (1995). A good 
account of Fibonacci numbers was given by Dunlap (1997).  

In conclusion 
The value of geometry in the art and design curriculum was recognised during the nineteenth and 
early twentieth centuries. Today, worldwide, in both developed and developing economies, it appears 
that the priority in design education is on training students in the usage of the most recent software, 
often at the expense of providing an understanding of more fundamental theoretical issues. Geometric 
concepts and principles are of importance to the success of all two- and three-dimensional design and 
should thus form an important element of the curriculum in all design courses. The reticence of 
instructors and teachers to address this issue is understandable, for often the knowledge and 
understanding required to develop appropriate theoretical curricula is hidden in relatively obscure 
literature, and wrapped in unfamiliar symbols and terminology. This paper provides a basic outline 
from which design educationists, with just a basic knowledge of geometry, may develop a module to 
meet the specific needs of their students. Effective teaching at university level should be conducted in 
a climate of research. As in-house research progresses this should feed the curriculum. A syllabus 
should not be set but should be in a state of development from year to year. Meanwhile students, on 
gaining a basic understanding of the geometrical concepts and constructions identified in this paper, 
should be able to conduct structural analyses of naturally occurring phenomena, human-made objects, 
images, paintings, sculpture, patterns, tilings and other forms of two- and three-dimensional designs. 
Two sample assignments, of the type set at the authors’ educational institution, are presented in the 
Appendix. These may be developed further into more substantial assignments. Where possible, 
assignments such as these should be integrated with conventional studio-based activity.   
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Appendix  

Exercise 1: Symmetry and proportion 
Select a frontal photograph of a human face that you consider to be very attractive. You are required 
to conduct a geometrical analysis of this image, with the objective of establishing the degree of 
bilateral symmetry and the presence of proportions/ratios which conform to the Fibonacci series and 
the associated golden section. You may wish to conduct the following measures: top of head to tip of 
chin; centre of mouth to tip of chin; centre of mouth to tip of nose; tip of nose to bridge of nose; bridge 
of nose to ear; bridge of nose to pupil of eye; pupil to pupil; width of nose at outer part of nostrils; pupil 
to eyelash; eyelash to eyebrow; eyebrow to eyebrow; any other measure you believe to be 
appropriate. You may then wish to establish if there are any apparent relationships between these 
measures. You may wish also to draw a mid-way line, down the centre of the image, and to measure 
features to the right and left of this line. Once measurements and calculations have been completed, 
you are required to present you data in tabulated form, and to briefly discuss the significance of your 
findings.  
                                                                              
Exercise 2: Modularity and pattern construction 
You are required to produce a collection of repeating designs, each created from tiling elements cut or 
drawn from a regular polygon (six designs from elements of a square, six designs from elements of an 
equilateral triangle and six designs from elements of a hexagon). To begin, draw a square to 
dimensions of your choice. Cut into two or more unequal parts. You have thus produced two or more 
tiles of different dimensions. Colour each tile with a colour of your choice. Make multiple copies (by 
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scanning or photocopying each coloured tile). Use these two or more different shaped tiles (in any 
numerical proportion you wish) to create a collection of six periodic tilings, which cover the plane 
without gap or overlap. A minimum of four repeats of each design must be shown. Each design must 
be original, precisely drawn, and distinctly different, and must not relay solely on a change of scale as 
a means of differentiation. Feel free to use computing software of your choice. Repeat the process 
using a regular hexagon and an equilateral triangle. 
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